Package: causalOT 1.0.2.9000

causalOT: Optimal Transport Weights for Causal Inference

Uses optimal transport distances to find probabilistic matching estimators for causal inference. These methods are described in Dunipace, Eric (2021) <arxiv:2109.01991>. The package will build the weights, estimate treatment effects, and calculate confidence intervals via the methods described in the paper. The package also supports several other methods as described in the help files.

Authors:Eric Dunipace [aut, cre]

causalOT_1.0.2.9000.tar.gz
causalOT_1.0.2.9000.zip(r-4.5)causalOT_1.0.2.9000.zip(r-4.4)causalOT_1.0.2.9000.zip(r-4.3)
causalOT_1.0.2.9000.tgz(r-4.4-x86_64)causalOT_1.0.2.9000.tgz(r-4.4-arm64)causalOT_1.0.2.9000.tgz(r-4.3-x86_64)causalOT_1.0.2.9000.tgz(r-4.3-arm64)
causalOT_1.0.2.9000.tar.gz(r-4.5-noble)causalOT_1.0.2.9000.tar.gz(r-4.4-noble)
causalOT_1.0.2.9000.tgz(r-4.4-emscripten)causalOT_1.0.2.9000.tgz(r-4.3-emscripten)
causalOT.pdf |causalOT.html
causalOT/json (API)
NEWS

# Install 'causalOT' in R:
install.packages('causalOT', repos = c('https://ericdunipace.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ericdunipace/causalot/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • pph - An external control trial of treatments for post-partum hemorrhage

On CRAN:

5.66 score 6 stars 19 scripts 290 downloads 21 exports 68 dependencies

Last updated 4 months agofrom:029378b204. Checks:OK: 3 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64OKNov 04 2024
R-4.5-linux-x86_64OKNov 04 2024
R-4.4-win-x86_64NOTENov 04 2024
R-4.4-mac-x86_64NOTENov 04 2024
R-4.4-mac-aarch64NOTENov 04 2024
R-4.3-win-x86_64NOTENov 04 2024
R-4.3-mac-x86_64NOTENov 04 2024
R-4.3-mac-aarch64NOTENov 04 2024

Exports:barycentric_projectioncalc_weightcotOptionsCRASH3dataHolderDataSimdf2dataHolderentBWOptionsESSestimate_effectHainmuellerLaLondemean_balanceMeasureot_distanceOTProblemPSISPSIS_diagsbwOptionsscmOptionssupported_methods

Dependencies:abindbackportsBHbitbit64callrCBPScheckmatechkclicodetoolscolorspacecorodescdistributionalellipsisfansifarverforeachgenericsggplot2glmnetgluegtableisobanditeratorsjsonlitelabelinglatticelbfgsb3clifecycleloomagrittrMASSMatchItMatrixmatrixStatsmgcvmunsellnlmennetnumDerivosqppillarpkgconfigposteriorprocessxpsR6RColorBrewerRcppRcppArmadilloRcppEigenRcppProgressrlangsafetensorssandwichscalesshapesurvivaltensorAtibbletorchutf8vctrsviridisLitewithrzoo

Object Oriented COT Objects

Rendered fromoopCOT.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2023-12-07
Started: 2023-12-07

Using causalOT

Rendered fromusage.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2023-12-07
Started: 2022-03-03

Readme and manuals

Help Manual

Help pageTopics
Barycentric Projection outcome estimationbarycentric_projection
Estimate causal weightscalc_weight
causalWeights classcausalWeights-class
Extract treatment effect estimatecoef.causalEffect
Options available for the COT methodcotOptions
CRASH3 data exampleCRASH3
dataHolderdataHolder
R6 Data Generating Parent ClassDataSim
df2dataHolderdf2dataHolder
Options for the Entropy Balancing WeightsentBWOptions
Effective Sample SizeESS ESS,causalWeights-method ESS,numeric-method
Estimate treatment effectsestimate_effect
Hainmueller data exampleHainmueller
LaLonde data exampleLaLonde
Standardized absolute mean difference calculationsmean_balance
An R6 Class for setting up measuresMeasure
Optimal Transport Distanceot_distance ot_distance.array ot_distance.causalWeights ot_distance.matrix ot_distance.torch_tensor
Object Oriented OT ProblemOTProblem
plot.causalWeightsplot.causalWeights
An external control trial of treatments for post-partum hemorrhagepph
Predict method for barycentric projection modelspredict.bp
print.dataHolderprint.dataHolder
Pareto-Smoothed Importance SamplingPSIS PSIS,causalWeights-method PSIS,list-method PSIS,numeric-method PSIS_diag PSIS_diag,causalPSIS-method PSIS_diag,causalWeights-method PSIS_diag,list-method PSIS_diag,numeric-method PSIS_diag,psis-method
Options for the SBW methodsbwOptions
Options for the SCM MethodscmOptions
Summary diagnostics for causalWeightsplot.summary_causalWeights print.summary_causalWeights summary.causalWeights
Supported Methodssupported_methods
Get the variance of a causalEffectvcov.causalEffect